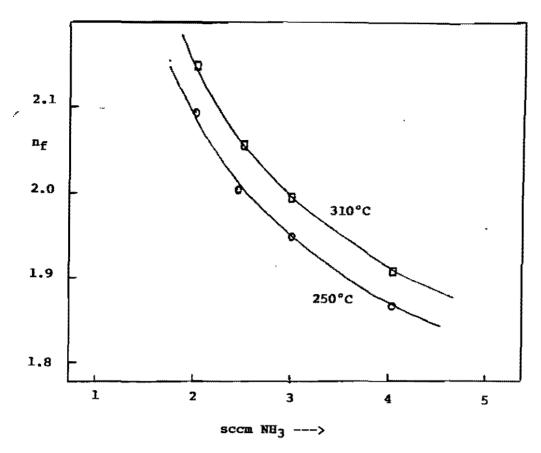
Sign4 DEPOSITION - STANDARD CAPCITOR/PASSIVATION FILM

Pressure R. F. Temperature	2% SiH ₄ in N ₂ N ₂ NH ₃	900 sccm 2-3 sccm 900mT 20W 250°-350°C
Si ₃ N ₄ refractive index (n _f) Uniformity Etch rate in BHF(6:1) 20°C		2.00 ± 0.02 < ± 3% < 800A/min.
Gas Channels	0-20 NH ₃ 0-1000 N ₂ 0-1000 N ₂	(SiH ₄ /N ₂)

GAS FLOW

This chemistry is quite similar to the "Low Stress" nitride except for the absence of He; without He the film is fixed at a slightly tensile stress state which does not vary with flow. The $\mathrm{NH_3/SiH_4}$ ratio will control $\mathrm{n_f}$ and is controllable between 1.85-2.20.

POWER


Power will affect dep rate and BHF etch rate; as deposition rate increases, thermally induced $\rm H_2$ desorption decreases leading to increased [H] in the film and increased etch rate in BHF. Large power increase will degrade film uniformity.

PRESSURE

For small changes (< 100mT), pressure has little effect on the process.

TEMPERATURE

Temperature is chosen primarily to be compatible with substrate material (e.g. 250°C for III IV materials, 350°C for Si). Slight changes in refractive index will occur with temperature change. BHF etch rate decreases with increasing temperature.

Variation of nf with [NH3] for Si3N4